MSCR vs AASHTO M320 – High Temperature Grade for HPTO

Thomas Bennert, Ph.D. Rutgers University, NJ Center for Advanced Infrastructure and Transportation (CAIT)

> FHWA Expert Task Group Meeting September 13th, 2016 Fall River, MA

Acknowledgements

- Axeon financially supported work
 - Ron Corun
 - Frank Fee (consultant)
- Rutgers staff
 - Christopher Ericson (Binder Testing)
 - Edward Haas and Edward Wass (Mixture Prep and Testing)

Problem Background

Problem Background

- In 2006, NJDOT began using HPTO using a polymer-modified PG76-22 asphalt binder
 - HPTO = High Performance Thin Overlay
 - NJDOT utilizes for thin-lift applications
 - Performance-Based design requiring APA (AASHTO T340) rutting requirement
 - General design
 - 4.75mm NMAS (fine 9.5mm NMAS)
 - Asphalt content > 7%
 - Design AV% = 3%
 - Design Gyrations = 50 gyrations

Problem Background

- Some issues in 2015 regarding failing HPTO mixtures specified using PG64E-22 asphalt binder
 - Minimal previous issues prior to PG64E use

Date	Original	RTFO	PG Grade	Jnr (1/kPa)	% Rec	MSCR Grade	δ @ 76C (Orig)	δ @ 76C (RTFO)	APA (mm)
5/27/2015	77	76.6	PG76	0.36	59	PG64E	73.6	68.3	6.56
5/28/2015	78.8	78.8	PG76	0.18	72.9	PG64E	69.5	64.5	6.23
5/29/2015	79.6	79.6	PG76	0.17	74.4	PG64E	69.9	64.5	6.5
6/3/2015	78.3	78.7	PG76	0.16	75.5	PG64E	69.6	63.5	6.84
6/4/2015	86.5	79	PG76	0.17	92.4	PG64E	58.9	58.4	3.66
6/5/2015	84.2	78.6	PG76	0.14	77.6	PG64E	65.4	64.8	3.87
6/9/2015	87	81.1	PG76	0.061	89.2	PG64E	60.7	60.1	3.92
6/10/2015	83.7	81.7	PG76	0.1	80.2	PG64E	66	61.8	4.32
6/11/2015	86.3	80.9	PG76	0.051	91.3	PG64E	60.8	58.4	3.98
6/12/2015	82.4	81.2	PG76	0.048	91.3	PG64E	66.8	60.4	3.73
6/17/2015	87.5	81.8	PG76	0.046	92.2	PG64E	60.6	57.9	3.83
6/18/2015	87.6	82.6	PG82	0.041	92.4	PG64E	61.2	59.2 @ 82C	2.94
6/19/2015	86.5	82.3	PG82	0.041	92.4	PG64E	59.2	59.2 @ 82C	2.73
6/24/2015	83.8	79.5	PG76	0.074	89.1	PG64E	62	59.7	3.99

2015 Failing HPTO Binders

Results of 2015 Testing (1 of 2)

- Jnr > 0.16 resulted in failing APA rutting
- RTFO PG grade < 79° resulted in <u>failing</u> APA rutting
- Orig PG Grade < 82° resulted in <u>failing</u> APA rutting
- Binders from retains taken at plant during production

82

Continuous High Temperature PG Grade

84

86

88

78

80

76

Results of 2015 Testing (2 of 2)

- MSCR % Recovery < 77% resulted in <u>failing</u> APA rutting
- Orig δ @ 76°C > 67
 degrees resulted in
 <u>failing</u> APA rutting

APA vs MSCR % Recovery @64C

2015 PANYNJ Issues

- At the same time, Rutgers working with PANYNJ on high temperature binder issues
 - 31 Cores taken from areas where failed binder retains occurred – sent to Rutgers for recovery, PG grading – MSCR also conducted
 - PANYNJ specified job for PG76-22; not using MSCR yet
 - All 31 cores failed for high temp of 76°C; 28 were at 70°C, 3 were 64°C
 - 28 of 31 cores <u>PASSED</u> for a PG64E-22

PANYNJ Cores (All Samples Failed PG76 High Temp)

Question?

- During MSCR implementation, northeast states tested binders, that at the time, met the current PG grade
 - Compared MSCR results to PG grades to help establish equivalent M332 traffic levels
- NJDOT agreed that 64E should be same as the previous PG76-22
 Now that MSCR has been implemented, are states that are used to getting previous binder performance, still receiving those binders?
 - Or has binder modification now changed to meet M332, creating binders that no longer compare to what states were previously receiving under M320?

MSCR Jnr Divisions

- Where did the Jnr grading divisions come from?
 - Spoke with John D'Angelo
 - Neat binders for regional climate usually around and under 4.0 to 4.5 1/kPa
 - When conducting mixture testing, every ≈50% reduction in permanent deformation was approximately a ≈50% reduction in Jnr
 - So, original divisions went from: 4.0 to 2.0 to 1.0 to 0.5
 - Should Jnr divisions be revisited?

Laboratory Testing Program

M332 vs M320 HPTO Binder Spec

Testing program

- Procure 8 binders from different suppliers consisting of different sources and modifications
- PG grade according to M320 and M332
- Use binders in a NJDOT approved HPTO mix and conduct testing after; 1) Volumetric Conditioning and 2) STOA Conditioning
 - APA (a) 64C (Standard for HPTO Spec)
 - Flow Number @ 54C (Using NCHRP 9-33 protocols)
- Compare binder to mixture performance and determine if current MSCR requirements are appropriate for NJDOT HPTO

New Jersey Department of Transportation

04/09/2015

HMA Mix Design

Region: North

Mix ID#	N01DN0201VIR
Mix Type	HMA, HIGH PERFORMANCE THIN OVERLAY
Producer	TILCON - MOUNT HOPE, NJ (HMA PLANT)
Mix Temp. (F)	330

Compaction Temp. (F) 312.5

 Effective Date
 6/3/2013

 Expiration Date
 5/1/2016

 Verification Type
 Lab Verification

 Designer
 REBECCA GUARDINO

TILCON NEW JERSEY - MOUNT HOPE, NJ (AGGREGATE)

TILCON NEW JERSEY - MOUNT HOPE, NJ (AGGREGATE)

NJDOT APPROVED BINDER

SIEVI Inch	E SIZE mm	Job Mix Formula	Broad min.	lband max.	Production min.	Tolerances max.	Tests Performed		Test Results	Test (Criteria
2	50		100	100	T		%Air Voids (Va)		3.52		Г
1 1/2	37.5		100	100			[%VMA		20.5	18	ſ
1	25		100	100			%VFA		83		[
3/4	19		100	100			Dust/As	phalt Ratio	0.7	0.6	1.3
1/2	12.5		100	100			Drain Do)wn]		<u> </u>
3/8	9.5	100	100	100			VCA - M	ix] []		<vca dry<="" td=""></vca>
No.4	4.75	77	65	85			VCA - di	У			
No.8	2.36	43	33	55			Max. Sp.Grav. (Gmm)		2.387		
No.16	1.18	29	20	35			Bulk Sp.Grav. (Gmb)		2.303		
No.30	0.6	21	15	30			% Gmm @ N Max				[
No.50	0.3	14	10	20			Sp. Grav. of Binder (GB)		1.028		[
No.100	0.15	7	5	15			Sp. Grav. of Agg. Blend (Gsb)		2.688		
No.200	0.075	5.2	5.0	8.0			Moist.Sensitivity TSR		85.1		
		- Mentalities					lbs./Squ	are Yard/Inch	107.82		
							% Gmm @ N Design			95.5	97.5
					Ignition Oven Agg. Correction Factor.CFI 0.14 @ 53		0.14 @ 538	Degrees C			
					% Absor	bed AC	0.37				
COMPONENT MATERIALS					-	OTAL MIX % C	OMPONENTS	- PRODUCER	&		
AGGREGATES, STONE SAND, WASHED				16.	TILCON NEW JERSEY - MOUNT HOPE, NJ (AGGREGATE)						
AGGREGATES, STONE SAND, UNWASHED					30.	6 TILCON NEW JERSEY - MOUNT HOPE, NJ (AGGREGATE)					

44.6

0.9

7.2

Remarks: APA AASHTO TP63 <4.0mm = 3.83mm DRAINDOWN 0%< MAXIMUM 0.1%

AGGREGATES, COARSE, *9, BROKEN STONE

AGG. FOR HMA, MINERAL FILLER

ASPHALT, BINDER, GRADE PG64-E -22

Binders

Supplier	Description
Road Science	Southeast Phase Angle
Road Science	NJDOT - PPA + SBS
Road Science	NYSDOT - SBS Only
All States	NYSDOT - SBS Only
Axeon	76-22 (Pre-MSCR)
Axeon	PG64E-22 2016
Lion Oil	4.25% SBS
Suit Kote	PG64E-22 2016

Binder Test Results

AASHTO M₃₂₀

Supplier	Description	Orig Continuous High Temp	RTFO Continuous High Temp	Orig Phase Angle @ 76C	RTFO/Orig	RTFO - Orig
Road Science	Southeast Phase Angle	81.5	80.9	69.6	0.99	-0.6
Road Science	NJDOT - PPA + SBS	80	81.2	71.5	1.02	1.2
Road Science	NYSDOT - SBS Only	83.6	82.9	66.4	0.99	-0.7
All States	NYSDOT - SBS Only	76.4	74.8	68.5	0.98	-1.6
Axeon	76-22 (Pre-MSCR)	79.3	78.3	75.9	0.99	-1.0
Axeon	PG64E-22 2016	80.4	78.4	74.7	0.98	-2.0
Lion Oil	4.25% SBS	85.7	78.7	60.5	0.92	-7.0
Suit Kote	PG64E-22 2016	82.5	79.1	64.5	0.96	-3.4

AASHTO M332 Results

Change in Jnr vs Change in PG Grade Test Temp

Changing 6°C (1 PG grade test temp) in Jnr test from 64C to 70C reduced Jnr by 62%

Change in Jnr vs Change in PG Grade Test Temp

- Looked at additional change in temps and included another 14 binders (n = 22) to check on consistency of Jnr change
- On average, when increasing test temp by 6°C, Jnr reduces by 60%, or becomes 40% of the previous test temperature's value

٨Ш	2.52		
All	40%		
58C to	2.39		
64C	42%		
64C to	2.53		
70C	39%		
70C to	3.11		
76C	32%		
76C to	2.48		
82C	40%		

Jnr Requirement Determined within PG Grade "Bump"

 Hypothesis: since we are still using 6°C intervals for testing, should the Jnr divisions be modified to represent how the binder is performing within these test temperatures?

Traffic	AASHTO	Based on PG		
Designation	M332	Temp "Bump"		
S	4.5	4.5		
Н	2.0	1.8		
V	1.0	0.7		
E	0.5	0.3		

Mixture Test Results

Mixture Test Results

		ΑΡΑ Τ	esting	Flow Number		
Supplier	Description	Volumetric	STOA	Volumetric	STOA	
		Conditioning	Conditioning	Conditioning	Conditioning	
Road Science	Southeast Phase Angle	4.43	2.67	593	1430	
Road Science	NJDOT - PPA + SBS	3.8	2.89	455	1373	
Road Science	NYSDOT - SBS Only	2.75	2.08	1104	3449	
All States	NYSDOT - SBS Only	3.06	2.24	445	936	
Axeon	76-22 (Pre-MSCR)	5.33	3.86	260	669	
Axeon	PG64E-22 2016	5.57	3.46	346	726	
Lion Oil	4.25% SBS	2.67	2.87	710	679	
Suit Kote	PG64E-22 2016	2.83	2.32	455	1422	

APA vs MSCR Jnr @ 64C

AMPT FN vs MSCR Jnr @ 64C

APA Results within MSCR

J_{nr} vs % Rec @ 64C

Study Conclusions

- Question: Will using current PG64E provide the same rutting resistance as previous PG76 for NJDOT's HPTO mixtures?
- Answer: It appears that the current M332 divisions may need to be modified for NJDOT HPTO mixtures
 - 1. APA rutting for Volumetric Conditioning shows
 - 1. < 0.37 for Production APA rutting
 - 2. < 0.23 for Design APA rutting
 - 2. Flow Number for STOA Conditioning shows
 - 1. < 0.35 for traffic levels > 30 MESAL's
 - MSCR Jnr limit of 0.3 kPa⁻¹ was able to differentiate PASSING/FAILING HPTO mixtures using Production tolerance.

NJDOT Recommendations

- For NJDOT's HPTO, it was recommended to change the Jnr value from <0.5 to < 0.3 kPa⁻¹
- NJDOT considering changing current MSCR
 Jnr to <0.3 kPa⁻¹ for all mixes using PG64E-22

Final Thoughts

- In adopting MSCR for high temperature, many states looked at how their PG binders were fitting into the MSCR system.
 - Example: NJDOT acknowledged that previous PG76-22 would have fell into 64E designation (Jnr < 0.5 kPa⁻¹)
- However, have we looked back now to see how the binders we are currently getting (modified to meet MSCR) would have fit into our previous PG system?
 - Are they what we were used to receiving?
 - If not, will performance change?

Thank you for your time! Questions?

Thomas Bennert, Ph.D. Rutgers University 609-213-3312 bennert@rci.rutgers.edu